If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+80x-104=0
a = 24; b = 80; c = -104;
Δ = b2-4ac
Δ = 802-4·24·(-104)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-128}{2*24}=\frac{-208}{48} =-4+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+128}{2*24}=\frac{48}{48} =1 $
| F(x)=900-9x | | c+12=17 | | 12x-4x=1,232 | | 2d6=5- | | 8y^2+86y-22=0 | | 10x+-90=-10 | | -32=-13+v | | 1/2x=57 | | 8p^2+58p+14=0 | | 3*4^x=2^(2x+1) | | x-(1/3)=48,000 | | ?x?=385 | | 19d-19d+d=13 | | 3x-51=5x-5 | | -30,000+1600t-16t^2=0 | | xx16=18 | | 3*4^x=2^2x+1 | | 4z^2+23z-6=0 | | 6t-6t+t=17 | | 1.4+x=7 | | f/2-22=-25 | | -6(5-7x)=-198 | | 4d^2-25d+6=0 | | v^2+12v-13=0 | | -8+5x=-14+x+4+3x | | 656=-8(-2+8x) | | -9s-15=-6 | | 4x5=45 | | j^2+14j+49=0 | | 3j^2+19j+6=0 | | 3x-46=3(x+2) | | 14z-11z+2z-4z=17 |